Database Principles in Information Extraction

*
Benny Kimelfeld
LogicBlox, Inc.
Berkeley, CA, USA
bennyk@gmail.com

ABSTRACT

Information Extraction commonly refers to the task of populating
a relational schema, having predefined underlying semantics, from
textual content. This task is pervasive in contemporary computa-
tional challenges associated with Big Data. This tutorial gives an
overview of the algorithmic concepts and techniques used for per-
forming Information Extraction tasks, and describes some of the
declarative frameworks that provide abstractions and infrastructure
for programming extractors. In addition, the tutorial highlights op-
portunities for research impact through principles of data manage-
ment, illustrates these opportunities through recent work, and pro-
poses directions for future research.

Categories and Subject Descriptors

H.2.1 [Database Management]: Logical Design—Data models;
H.2.4 [Database Management]: Systems—7extual databases, Re-
lational databases, Rule-based databases; 1.5.4 [Pattern Recogni-
tion]: Applications—Text processing; F.4.3 [Mathematical Logic
and Formal Languages]: Formal Languages—Algebraic language
theory, Classes defined by grammars or automata, Operations on
languages; F.1.1 [Computation by Abstract Devices]: Models of
Computation—Automata, Relations between models

General Terms
Theory

Keywords

Information extraction, document spanners, regular expressions,
finite-state transducers, database inconsistency, database repairs,
prioritized repairs

*The work of the author mentioned in this paper was done while at
IBM Almaden — Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

PODS’14, June 22-27, 2014, Snowbird, UT, USA.

Copyright 2014 ACM 978-1-4503-2375-8/14/06 ...$15.00.
http://dx.doi.org/10.1145/2594538.2594563 .

156

1. INTRODUCTION

Information Extraction (IE) refers to the task of discovering struc-
tured information in textual content. More precisely, the goal in IE
is to populate a predefined relational schema that has predetermined
underlying semantics, by correctly detecting the values of records
in a given text document or a collection of text documents. Popu-
lar tasks in the space of IE include named entity recognition [60]
(identify proper names in text, and classify those into a predefined
set of categories such as person and organization), relation extrac-
tion [67] (extract tuples of entities that satisfy a predefined rela-
tionship, such as person-organization), event extraction [3] (find
events of predefined types along with their key players, such as
nomination and nominee), temporal information extraction [21,44]
(associate mentions of facts with mentions of their validity period,
such as nomination-date), and coreference resolution [53] (match
between phrases that refer to the same entity, such as “Obama,”
“the President,” and “him”).

As a discipline, IE had its start with the DARPA Message Un-
derstanding Conference in 1987 [29]. While early work in the area
focused largely on military applications, this task is nowadays per-
vasive in a plethora of computational challenges, in particular those
associated with Big Data, such as social media analysis [7], ma-
chine data analysis [26], healthcare analysis [66], customer rela-
tionship management [2], and indexing for semantic search [69].
Within a typical text-analytics pipeline (e.g., [65]), the output of IE
is fed into a cleaning and/or fusion component, such as an entity-
resolution algorithm, that in turn produces input for a global pro-
cessing phase (e.g., statistical analysis or data mining). Contem-
porary business models like cloud computing, along with analyt-
ics platforms like Hadoop, facilitate such data analyses for a broad
range of individuals and organizations.

This tutorial focuses on foundations of data management sys-
tems that involve IE over textual content. In Section 2 we give an
overview of the methodologies used for carrying out IE tasks; we
also highlight some programming paradigms and abstractions for
developing IE solutions. Section 3 describes our recent work on
a formal framework for IE, where we leverage known principles
of database management. We conclude with Section 4, where we
propose directions for future research.

2. PARADIGMS AND METHODOLOGIES
FOR INFORMATION EXTRACTION

A plethora of methodologies have been proposed, studied and
practiced for carrying out IE. We identify four main categories of
methodologies: (1) rule invocation, (2) inference over probabilis-
tic graphical models, (3) inference under soft logical constraints,
and (4) classification. The approaches in the first category deploy

various rule languages as high-level specifications of deterministic
IE programs. Within the second category, the IE task is encoded
as a probabilistic model that combines the text tokens, annotations,
and features as random variables with inter-dependencies, while
the actual result is obtained by means of inference (e.g., finding the
most likely assignment to the variables). The third category can be
viewed as a combination of the former two: rules are specified, yet
can be violated, and are in fact means of specifying a probability
space over possible results (where the probability is measured by
the cases of violation and satisfaction of the rules). Approaches in
the fourth category treat the extraction task as a classification prob-
lem on candidate tuples. In each of these categories, components
of the solution, such as rules and weight parameters, can be either
manually encoded or automatically constructed from examples (by
means of machine learning). Interestingly, a recent study [15] high-
lights and quantifies a contrast between the dominance of proba-
bilistic approaches in scientific publications on IE in the research
community of Natural Language Processing (NLP), and the domi-
nance of rule-based approaches in industrial solutions.

Our focus here is on the first aforementioned category of method-
ologies for IE, namely rule invocation. Next, we describe the ideas
underlying representative rule-based formalisms and systems. For
completeness, we also give an overview of concepts in the other
categories. The interested reader is referred to published tutorials
and surveys on IE, such as Sarawagi’s [57], for in-depth discussions
on approaches to IE.

2.1 Rule Invocation

A typical rule-based system for IE supports two kinds of rules.
Rules of the first kind declare the manner by which spans (intervals
within the document) are annotated when scanning the text. Such a
rule is usually a finite-state transducer that is represented by means
of a pattern in some grammar. We refer to such rules as direct
extractors. Rules of the second kind operate on top of the anno-
tations produced by the direct extractors, and determine how those
should be combined (e.g., by joining annotations into richer tuples,
or by resolving conflicts among extracted tuples). In RAPIER [12],
for instance, the rules are mostly direct extractors, and a rule is
specified through three patterns: a filler that matches the extracted
span, a pre-filler that matches the text right before the filler, and a
post-filler that matches the text right after the filler. Each of these
patterns is phrased as a regular expression (in a restricted gram-
mar) over the words and part-of-speech tags. As another example,
in WHISK [60] the transducers are defined as regular expressions
with capture variables, which are embedded variables that are as-
signed the substrings that match the corresponding parts of the text;
it also deploys rules to filter out conflicting extracted tuples (for ex-
ample, different tuples should not contain overlapping spans), by
imposing a special behavior of the transducers. As a third exam-
ple, in FASTUS [4] the transducers are applied in two different
phases, where the first phase (“Recognizing Phrases”) produces
annotations that are referenced by the rules of the second phase
(“Recognizing Patterns”); following these two phases, the system
applies rules that merge tuples produced by the second phase.

The earlier rule-based systems evolved into development plat-
forms for programming IE. One of the most popular such platforms
is the General Architecture for Text Engineering (GATE) [19], an
open-source project by the University of Sheffield. GATE is an in-
stantiation of the cascaded finite-state transducers specified by the
Common Pattern Specification Language (CPSL) [5]. The core IE
engine of GATE, called JAPE, processes a document via a sequence
of phases (or cascades), each annotating spans with types by ap-
plying grammar rules over previous annotations and user-defined

157

Java procedures. Another such a system is Xlog [59], which ex-
tends (non-recursive) Datalog with documents and spans as primi-
tive data types, and built-in extractors (e.g., matchers of regular ex-
pressions) of spans from documents, and features a query plan op-
timizer. A system with substantial industrial and academic impact
is SystemT [14], which evolved from the Avatar project [36, 54]
and supports an SQL-like declarative language named AQL (An-
notation Query Language). SystemT also includes a query-plan
optimizer [54] and development tooling [45]. Conceptually, AQL
provides a collection of direct extractors of relations from text (e.g.,
tokenizer, dictionary lookup, matchers of regular expressions, part-
of-speech tagger, and other morphological analyzers), along with
an algebra for relational manipulation.

There are also rule systems for IE that are designed for natural
language, as their rules can be applied to structured data that ex-
pose pre-applied linguistic analyses. Examples include LIEP [33]
(which exposes restricted linguistic information obtained through
simple patterns) and INSTAREAD [30] (which exposes more thor-
ough text processing such as deep parsing, coreference resolution,
and named-entity recognition). Both of these systems use variants
of (non-recursive) Datalog over base relations (EDB predicates)
that store the linguistic information.

A significant research effort has been made towards the automa-
tion (or semi-automation) of rule engineering for IE. Such automa-
tion includes dictionary learning, rule refinement, and rule induc-
tion. In dictionary learning, a given seed dictionary is automati-
cally expanded from a text corpus [17,56]. Rule refinement aims
to improve existing rules by (at least conceptually) exploring the
space of syntactic revisions to the rules and observing the resulting
impact on the performance on labeled data [45]. In rule induc-
tion, the rules are produced from scratch by learning from training
data. The induction techniques include incremental rule specifica-
tion (i.e., fop-down induction), where the algorithm begins with
high-recall rules and gradually restricts the rules to account for
false positives [24, 60]; they also include the analogous rule gener-
alization (i.e., top-down induction, where the algorithm generalizes
rules that initially overfit the examples) [12, 16], and techniques
from inductive logic programming [1,47].

2.2 Inference and Classification

Designing rules to properly capture the given IE problem may
be overly tedious and expensive, depending on the nature of the
task and domain. In natural-language text, for example, there is a
great variety of ways of expressing the same information, and the
extraction should account for typical mistakes due to practices such
as grammatical errors, jargon, slang, wishful thinking and sarcasm.
An alternative approach, which has been extensively explored, is
to capture the problem by means of a probabilistic model, where
the actual IE task is done through inference over the probabilis-
tic space. An important advantage of this approach is due to the
fact that, very often, a significant portion of the specification of the
probabilistic model (e.g., numeric parameters) can be effectively
learned automatically by using well studied machine-learning tech-
niques. Hence, machine learning can replace much of the work
that would otherwise be done by the developer. IE development
then entails labeling of examples (or generation of such examples
from available resources) and engineering of features (informative
components in the specification of the probabilistic model). Label-
ing of examples may be overly expensive if the learning technique
requires too much training, and there have been approaches to re-
duce the effort of labeling, such as weak supervision [31]. Different
methodologies within the probabilistic approach differ in the lan-

guage and structure that specify the probabilistic model, and con-
sequently, in the deployed training and inference algorithms.

An example of a probabilistic model for IE is a Naive Bayes clas-
sifier, where the label of each token is determined independently
by features of a (bounded-length) window that surrounds the to-
ken [25]. This model can be viewed as a simple case of probabilis-
tic graphical model, which is a model where the text tokens, fea-
tures, hidden states and annotations are presented as random vari-
ables organized in a graph structure, where edges represent proba-
bilistic correlations using the Markov property stating that a node
is independent from the rest of the nodes, given its neighbors. Such
graph models that have been applied to IE include Hidden Markov
Models [8,9,27,42] and Maximum Entropy Markov Models [39,46],
which are Bayesian networks (i.e., directed acyclic graphical mod-
els) that can be viewed as generative models of text (in the former)
or annotations (in the latter). A highly successful graph model is
that of Conditional Random Fields [13, 41, 64], which is a non-
generative model where the underlying graph is undirected.

Rules (or constraints) with soft interpretation provide means to
program extractors by combining the simplicity and expressive-
ness of rules (allowing the developer to easily express her domain
knowledge and insights) with the ability of probabilistic models to
capture the uncertain nature of text extraction and to utilize tech-
niques from machine learning. The deployed rules are logical for-
mulas with free variables. An example of such a rule is the fol-
lowing: “If a location name y occurs in a sentence at most 3 to-
kens after a person name x, and one of these tokens is born, then
BornIn(x, y) is true.” The rules can be grounded by replacing the
free variables with actual values (which are obtained by, e.g., de-
terministic rule invocation). For instance, a possible grounding of
our example rule replaces = with “Einstein” and y with “Germany.”
These rules are usually weighted in order to express a-priory reli-
ability therein. A possible world can be viewed as a collection of
grounded predicates such as BornIn(Einstein, Germany).

Different notions of soft constraints weight (that is, assign a
certainty or probability measure to) a possible world by applying
aggregate measures on the grounded rules that are satisfied and
those that are violated. SOFIE [63], for example, attempts to sat-
isfy the grounded rules to a maximum extent, using a MAX-SAT
solver; hence, under this approach the probability of a possible
world is (proportional to) the sum of weights across all the satisfied
grounded rules. Probabilistic Soft Logic (PSL) [10] and Markov
Logic Networks [50, 55] (MLNs), which have also been applied
to IE [48, 51, 58], apply different such aggregate functions (which
we do not define here) over the groundings. Interestingly, recent
work has drawn strong connections between MLN inference and
database research: Niu et al. [48] showed how a relational query en-
gine can be used to improve the efficiency of inference over MLNSs,
and Jah and Suciu [37] showed that inference in MLNS can be car-
ried out via a reduction to the problem of query evaluation over
tuple-independent probabilistic databases [20]. Such probabilistic
databases have been used by Dylla et al. [21] directly for IE.

An [E task can also be cast as a classification problem on can-
didate tuples. In such an approach, one first produces a set of can-
didate tuples by some simple means of extraction (featuring high
recall but possibly low precision), and then applies classification to
distinguish the correct tuples from the wrong ones (and therefore
increase the precision). In standard classification, every instance
(candidate tuple in our case) is mapped into a vector of features,
each describing some property of the instance, and the classifier
operates over that vector. The features can be either defined manu-
ally [35,43] or produced automatically from linguistic information,
typically by graph querying (e.g., a feature is a sequence of la-

158

bels on a path that connects the spans of a tuple in the dependency
tree) [62] or graph kernels that translate a large (implicitly defined)
space of features over graphs (e.g., paths connecting spans) to var-
ious measures of similarity to the training examples [11, 18].

3. THE FRAMEWORK OF DOCUMENT
SPANNERS

In this section, we review a recent work by Fagin et al. [22,23]
who established a formal framework for IE programs, conducted an
investigation of expressiveness, and proposed concepts that unify
key mechanisms in existing rule systems by making connections to
known principles from database research.

As mentioned earlier, a typical rule in an IE program expresses
two kinds of functions. Functions of the first kind are direct extrac-
tors that produce tuples of spans by directly processing the text,
usually via specified transducers (e.g., a regular expression with
capture variables, or a dictionary lookup). Functions of the second
kind apply relational manipulation to the relations obtained from
the direct extraction. In XLog [59] and INSTAREAD [30] the rela-
tional manipulation is expressed through the (non-recursive) Data-
log syntax and semantics, and in SystemT [14] the manipulation is
by a variation of SQL. In CPSL [5] and JAPE [19], each cascade
consists of transducer specifications that can reference the anno-
tations of previous cascades; these specifications combine the two
kinds of functions, but they can be viewed, conceptually, as rela-
tional joins between direct extractors in different cascades. Later,
we will also discuss cleaning mechanisms that SystemT and JAPE
further provide.

A rule language that features the above two kinds of functions
can be abstracted as an ordinary relational query language, except
that the base relations are replaced with the direct extractors. The
framework of document spanners (or just spanners for short) is
based on this abstraction, and in particular, aims to explore the re-
lationship between the direct extraction (by different mechanisms)
and the relational manipulation (through various relational opera-
tors); for example, a natural question to ask is to what extent the
relational manipulation adds expressive power to the direct extrac-
tors. Next, we describe the spanner framework.

3.1 Spanners

We first need some notation. We assume a fixed, finite alphabet
3. A document is a finite string over ¥ (i.e., a member of the set
¥*). A span of adocument d = oy - - - o, represents the range of a
substring of d, and if has the form [4, j), where 1 < i < j < n-+1.
The substring of d spanned by [i, j) is the string o; - - - 0j—1. For
example, if d is ACM_PODS_2013, then the span [5, 9) refers to the
part of d from the fifth to the eighth symbols inclusive, spanning
the substring PODS. The variables we use in this framework are all
assigned spans. A spanner extracts from a string a relation over its
spans, and it is formally defined as follows. Let V' be a finite set of
variables. A (V,d)-tuple is a mapping that assigns a span of d to
each variable in V. A (V, d)-relation is a set of (V, d)-tuples. Note
that in a (V, d)-relation, the variables of V" are playing the roles of
the attribute names, and the spans themselves are used as attribute
values. When V' and d are clear from the context, we may write
just tuple and relation instead of (V, d)-tuple and (V, d)-relation,
respectively. A spanner is a mapping that is associated with a set V'
of variables, and that maps every document d to a (V, d)-relation.

As an example, Figure 1 depicts a document d. The alphabet
3. consists of the lowercase and uppercase letters from the English
alphabet (i.e., a,...,z and A,...,Z), the comma symbol (“,”), and
the underscore symbol (““_") that stands for whitespace. (We use a

Carter_from_Plains,_Georgia,_Washington_from_Westmoreland, _ Virginia

123456789 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

Figure 1: Example of a document

Proc(d)
X1 X2 y
w | [13,19) | [21,28) | [13,28)
ue | [21,28) | [30,40) | [21,40)
us | [46,58) | [60,68) | [46,68)

Figure 2: The result of applying the spanner pjoc to the docu-
ment d of Figure 1

restricted alphabet for simplicity.) The figure also depicts the index
of each character in d. Later, we will define a spanner pjoc. Figure 2
shows the result of pioc over d; this resultis a (V, d)-relation, where
V= {I1, T2, y}

Fagin et al. [22] focus on representations of spanners, and their
associated expressive power. The main representation system they
consider consists of the following.

o Direct extractors are defined by regular expressions with cap-
ture variables (and with some natural syntactic restrictions),
which they call regex formulas. These regex formulas take
the role of the base relations in the relational model.

e Relational manipulation is done by algebraic operators such
as natural join, projection, union, difference, and different
kinds of selection. Note that projection is based on span
equality rather than string equality.

We do not give the formal definition of a regex formula here,
but rather provide examples. For a formal definition of a regex
formula, the reader is referred to the paper of Fagin et al. [22]. The
following regex formula extracts tokens (which, for simplicity of
presentation, are simply complete words) from text.

Yikn[2] 1= (1

(ev(Z* D) - zfla—zA—2Z]"}- (((v2) - =%) ve)

)
€

In the syntax of regex formulas, denotes the empty string, “v”
denotes disjunction, “*” denotes Kleene star, “*” is the same as
“*» with the exclusion of zero occurrences, and “-” denotes con-
catenation. We often omit concatenation for readability. We are
also using the convention that > denotes the disjunction over all
the symbols, [a — z] denotes the disjunctiona v --- v z, [A — Z]
denotes the disjunction A v --- v Z, and [a — zA — Z] denotes the
disjunction [a — z] v [A — Z]. Observe that the formula is applied
to the entire document d (as opposed to every substring of d).

The above regex formula (1) defines a spanner with the vari-
able set V' = {x}. The expression to the left of matches either
the empty string (meaning that x is a prefix of the document) or
a string that ends with an underscore. The expression to the right
of = matches either the empty string (meaning that x is a suffix
of the document), or a string that begins with an underscore or a
comma. The expression [a — zA — Z]* inside x{-} means that x
is a nonempty string that consists of only English letters (where
each letter is in either lowercase or uppercase). When applied to
the document d of Figure 1, the resulting (V, d)-tuples map z to
[1,7), [8,12), and so on.

The following regex formula extracts spans that begin with a cap-
ital letter.

Yicap[z] 1= »* -zf{[A —Z] - E*} S

159

When applied to the document d of Figure 1, the resulting spans
include [1,7), [1,3), [13,19), [13, 20), and so on.

The following regex formula extracts all the triples (z1, z2,¥y)
of spans such that the string “, _” separates between x1 and 2, y is
the span that begins where x1 begins and ends where z2 ends, and
both x1 and 2 are tokens that begin with a capital letter.

Poc[z1, w2, y] :=(5% - y{21 {S*}, _z2{=*}} - TF) 2
>4 Yikn[21] >4 Yikn [22] D Yicap[21] > Y1cap[22]

The result of applying pioc[z1, 22, y] to the document d of Figure 1
is depicted in Figure 2. Note that the natural join is realized by us-
ing the same variable (namely x1 or z2) in multiple regex formulas.

All of the regex formulas given so far define what we call hierar-
chical spanners; this means that in every extracted (V, d)-tuple p,
and for every two variables z,y € V, at least one of the following
holds.

o u(x) is contained in p(y);
e u(y) is contained in p(z);
e u(x) and p(y) are disjoint.

An example of a non-hierarchical spanner is given by the follow-
ing expression, which we will later reference in a different context.
This spanner extract all the pairs (y,y’) of spans, such that y and
3y are different spans with a nonempty intersection (overlap), and
either y begins before 3’ or ¢’ is a prefix of .

Ty, y/ ((E* Y{ST ST} TF T) 3)

(5 Y ({27} 57 5%) o
(5" y{y{z7}- 27 5)

Note that in the left operand of the union (u), the variable z repre-
sents a nonempty prefix of 4, such that z is contained in y but is
not a prefix of y. Also note that the spanner defined by this operand
does not have the variable z, since z is projected out by the opera-
tion 7y, .

3.2 Expressiveness

To investigate the expressiveness of spanners defined by regex
formulas and relational algebra, Fagin et al. [22] studied repre-
sentation systems for spanners by means of simple transducers.
Intuitively, those transducers are ordinary nondeterministic finite
automata that open and close variables along their run, with the
restriction that every variable should be opened and later closed
precisely once. One such type of a transducer is the variable-set
automaton, abbreviated vser-automaton. Figure 3 depicts an exam-
ple of a vset-automaton. Observe that some of the transitions open
variables (e.g., 1) and some close variables (e.g., - x1). A vset-
automaton is a nondeterministic machine, and it can have multiple
accepting runs over a document d; each accepting run defines a
beginning and an end index in d for each variable. The spanner
defined by a vset-automaton produces one (V, d)-tuple (where V/
is the set of variables that occur in the automaton) for each accept-
ing run. As an example, the vset-automaton of Figure 3 defines the
same spanner as the one defined by the regex formula pjoc defined

%

a—zA—-127

Figure 3: An example of a vset-automaton

in (2). Again, the reader is referred to Fagin et al. [22] for a precise
definition of a vset-automaton and its translation into a spanner.

A vset-automaton can represent spanners that are not definable
by any regex formula. In particular, regex formulas can define
only hierarchical spanners, whereas it is easy to construct a vset-
automaton that defines a non-hierarchical spanner. Fagin et al. [22]
proved the following theorem, stating the relationship between regex
formulas and vset-automata.

THEOREM 3.1. [22] The following hold.

1. The class of spanners that are representable by regex formu-
las is precisely the class of hierarchical spanners that are
representable by vset-automata.

The class of spanners that are representable by vset-automata
is precisely the closure of the regex formulas under differ-
ence, natural join, projection, and union.

Spanners representable by vset-automata are called regular span-
ners. Based on the above theorem, Fagin et al. [22] established
additional results. For example, they proved that the expressive
power of regular spanners is fully captured even without the differ-
ence operator in Part 2 of the theorem. They also give various fun-
damental results on the expressive power gained by adding string
equality of spans (e.g., z and y span the same string, even though
they may be different spans) as a selection operator; as an exam-
ple, they show that in the presence of string equality, the difference
operator strictly increases the expressive power.

3.3 Cleaning Inconsistencies through Database
Repairs

Databases often involve inconsistency, due to human errors, inte-
gration of heterogeneous resources, imprecision entailed in Extract-
Transform-Load (ETL) flows, and so on. The database research
community has proposed principled ways to capture and manage
data inconsistency [6]. A well-studied notion of inconsistency is
the violation of denial constraints [6]; such constraints forbid cases
such as two persons having the same driver’s license number, or a
person having multiple residential addresses. In IE tasks, inconsis-
tency occurs even at a lower level. For example, an extractor may
annotate multiple person mentions inside “Martin Luther King Jr”:
Martin Luther, Luther King, Martin Luther King Jr., etc. Moreover,
all of these annotated spans may be contained in the larger span
“1805 Martin Luther King Jr Way, Berkeley, CA 94709,” which by
itself is annotated as an address, and which should not overlap with
person mentions. As another example, consider again Figure 2,
showing the result of applying the spanner (represented by) pioc to
the document d of Figure 1. If the goal is to extract locations, then
the fact that the tuples p1 and p2 have overlapping assignments

160

for y can be viewed as inconsistency, since we expect mentions of
different locations to be disjoint spans.

To handle inconsistency, IE systems often provide cleaning mech-
anisms. JAPE [19], for instance, provides a collection of “controls”
that represent different cleaning policies. These policies apply to
unary annotators (that is, spanners with a single variable), and their
specifications explain how the grammar should be translated into
procedures (transducers) that avoid conflicts. As an example, in the
Appelt control the procedure scans the document left to right; when
at a specific location, it applies only the longest annotation, and
continues scanning right after that annotation. In the Brill control,
scanning is also done left to right, and when at a specific location,
all the annotations that begin there are retained; but after that, scan-
ning still continues after the longest annotation. In AQL [14], this
cleaning mechanism comes in the form of “consolidation.” Specif-
ically, the AQL declaration of a view may include a command to
filter out tuples by applying a consolidation policy to one of the
columns. There is a built-in collection of such policies, like Left-
ToRight, which is similar to Appelt, and ContainedWithin that re-
tains only the spans that are not strictly contained in other spans
(but other than that, overlaps are permitted). WHISK [60] does not
expose cleaning operations, but deploys implicit ones. For exam-
ple, it deploys a rule which states that the substring captured by the
wildcard (“*”) should be as short as possible. Another rule states
that after producing a tuple, the scan for the next tuple should pro-
ceed after (i.e., to the right of) all the spans of the first tuple (to
avoid overlaps). In a sense, the well known POSIX semantics for
matching regex formulas [34] can be viewed as an extreme cleaning
policy that retains at most one tuple from the result.

The above cleaning mechanisms have been collected in an ad-
hoc fashion in the course of use cases. Ideally, we would like to
allow IE developers to declare their own policies. But the above
policies are defined in a procedural way and, hence, it is not clear
how to extend the built-in operations without requiring low-level
coding of internal or external functions. In a recent work, Fagin et
al. [23] used the framework of spanners to establish a formalism
for declarative cleaning of inconsistencies in IE. This formalism
unifies all of the above cleaning policies by adopting the concept
of prioritized repairs [61], which extends the traditional notion of
database repairs [6] with priorities among conflicting facts. Next,
we briefly review this formalism.

In the framework of prioritized repairs, a relational database is
augmented with two components. The first component is that of
integrity constraints. To represent such constraints, Staworko et
al. [61] use the conventional formalism of denial constraints, which
are monotonic constraints (i.e., every subinstance of a consistent
database instance is also consistent) that generalize common con-
straints such as functional dependencies (and key constraints in par-
ticular). The second component is a priority relation >, which is a
binary relation over the facts; the meaning of fi; > fo is that the
fact f1 is prioritized over the fact fa. A partial repair of an in-
consistent database instance I is a consistent subinstance J (i.e., J
satisfies all the integrity constraints). A partial repair J is a Pareto
improvement of a partial repair J' if J contains a fact f, such that
feJ\J, and f > f' for every fact f' € J'\J. A Pareto-optimal
repair (referred to as just optimal here) is a partial repair that does
not have any Pareto improvement." Conceptually, an inconsistent
database instance is viewed as representing a set of consistent pos-
sible worlds—those are the optimal repairs.

I"There are other notions of prioritized repairs, but here we consider
only the Pareto semantics for simplicity of presentation. For a dis-
cussion on the relationship to other notions, see the work of Fagin
et al. [23].

To adopt the concept of prioritized repairs, Fagin et al. [23] in-
vestigate extraction programs that are phrased as acyclic Datalog
queries, where the EDB predicates (i.e., the relational symbols rep-
resenting the base relations) are replaced with spanners. To phrase

integrity constraints and priorities, they propose various formalisms.

Constraints are specified by a spanner variant of denial constraints.
Priority is specified by the formalism of priority generating depen-
dencies (pgds), which is a spanner variant of the well known tuple-
generating dependencies (tgds). The denial pgds jointly represent
denial constraints and pgds. For simplicity, we will discuss only
the latter formalism, namely pgds. An example of what one can
express with a denial pgd is the following:

overlap[z,y] — Address(x) > Person(y)

Here, overlap[z, y] is the spanner that produces all the pairs of over-
lapping spans, and Address and Person are unary relations that store
extracted spans. This denial pgd states that whenever two facts
Address(x) and Person(y) are such that = and y are overlapping
spans, these two facts are in conflict, and moreover, the fact on the
left side, namely Address(x), has priority over the fact on the right
side, namely Person(y). (This can be due to the fact that the ad-
dress extractor is deemed more precise than the person extractor.)
Note, however, that the fact that Address(x) and Person(y) are in
conflict does not necessarily mean that Person(y) is excluded from
every optimal repair; it may be the case that Address(x) is excluded
due to another declared denial pgd, in which case Person(y) may
survive.

As another example, consider again the spanner pjoc in (2). Sup-
pose that R is a ternary relation that represents the result of the
spanner pioc; in the case of the document d of Figure 1, the relation
R is given by the table in Figure 2. Let p[y, y'] denote the spanner
defined in (3). Now consider the following denial pgd.

ply,y'] = (R(z1, 22,y) > R(x1, 25,9))

Similarly to the previous example, this denial pgd states that in R,
whenever two facts R(z1,x2,y) and R(z!,x5,y’) are such that
the pair (y,y’) is extracted by p, these two facts are in conflict,
and moreover, R(x1,x2,y) has priority over R(z!,z5,y’). This
denial pgd actually captures the Appelt control of JAPE (as well as
the LeftToRight consolidator of AQL). When applying this denial
pgd to our example of R (Figure 2), we get a single optimal repair
(possible world), namely the relation that consists of the tuples p1
and p3.

The property of defining a single optimal repair has practical im-
portance, since systems are often not designed to support multiple
possible worlds. Fagin et al. [23] explore the problem of whether
a given specification with denial pgds (and/or a combination of de-
nial constraints and pgds) is such that a single possible world is
assured on every document. Unfortunately, they show undecidabil-
ity results, such as the following one.

THEOREM 3.2. [23] The following is undecidable. Given a de-
nial pgd of the form p[z,y] — (R(z)t>R(y)), where p is a regular
spanner, is there an optimal repair for every document d, assuming
that R contains all the spans of d?

Practically, this theorem implies that more restricted safety con-
ditions should be deployed. That work shows some tractable vari-
ants of this problem, but the exploration of robust variants that cap-
ture real-life examples is left for future research.

Another question they explore is whether the cleaning operations
increase the expressive power of the extraction language (in the
case of a single optimal repair). They show that in the case of reg-

161

ular spanners, it is possible to define a denial pgd that strictly in-
creases the expressive power. Yet, interestingly, all of the policies
mentioned in this section (include POSIX) do not increase the ex-
pressive power of regular spanners (but they increase the expressive
power if string equality is allowed) [23]. This means that if the pro-
gram uses only regular spanners with cleaning declarations, then it
can be translated into an equivalent program that has no cleaning
declarations. For some of the policies (e.g., ContainedWithin), this
result is a special case of a more general phenomenon (in particu-
lar, this result holds for every transitive denial pgd that is phrased
by means of a regular spanner). Also, for some of these cases (e.g.,
Appelt), this result required a fairly intricate proof.

4. CHALLENGES FOR FUTURE WORK

There are quite a few research challenges to pursue on the foun-
dations and realization of data management systems that effectively
incorporate IE. This section focuses on challenges that relate the
framework of document spanners.

The theoretical research on spanners is still in its early stage,
and some fundamental questions are still open. One class of such
questions relates to the computational complexity of spanners: un-
derstanding the complexity of spanner evaluation under different
representation systems, the complexity of translating spanners be-
tween representations (e.g., from algebraic expressions to and from
automata with variables), and the complexity of traditional static-
analysis questions such as emptiness, containment and equivalence
of spanners. Another important direction is the extension of span-
ner representations with recursion. Specifically, we believe that
some algorithms for IE can be naturally represented as recursive
Datalog programs with spanner rules (while existing Datalog rep-
resentations [23,30, 59] do not support recursion). Another impor-
tant direction is the incorporation of spanners within a more gen-
eral database that may include multiple documents and ordinary
relational data, as in Xlog [59]. Finally, Fagin et al. [23] leave open
some questions on the expressive power of spanners, such as the ef-
fect of allowing both string equality and difference in the relational
algebra. Obviously, some of these directions involve challenging
system aspects towards the application to real-life data and tasks.

To maintain high precision, rule specifications such as spanners
need to be highly elaborate, which often comes at the expense of
recall and/or software complexity (e.g., many rules need to be de-
ployed). It is then conceivable that in some practical scenarios
one would like to enhance the rules with an inference engine that
would reason about the precision of the rules and conflicts thereof.
In principle, one could naturally extend the framework of span-
ners with notions of soft constraints, such as the aforementioned
MLNSs [50, 55]. It has been shown that MLNs properly capture
the uncertainty involved in some IE tasks [48, 58]. We believe that
an important research direction is to explore the foundations of a
probabilistic database systems that combine Datalog, spanners and
MLNs. This direction will hopefully allow us to leverage the re-
search on learning soft constraints (e.g., [28, 40, 52]) within the
task of rule induction for IE. A related direction is the applica-
tion of spanners to probabilistic text (rather than deterministic text
as discussed here), in a manner similar to the work of Kimelfeld
and Ré [38] on the application of transducers to Markov sequences.
This is especially useful when the text is generated by procedures
that involve uncertainty, such as speech recognition [32], image
processing [49], and normalization of informal text [68].

Acknowledgments

The author is grateful to Ronald Fagin for providing helpful com-
ments on this paper.

S.
(1]

(2]

(3]

(4]

(5]

(6]

(7]
(8]

(9]

[10]
(11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

REFERENCES

J. S. Aitken. Learning information extraction rules: An
inductive logic programming approach. In ECAI, pages
355-359. 10S Press, 2002.

J. Ajmera, H.-I. Ahn, M. Nagarajan, A. Verma,

D. Contractor, S. Dill, and M. Denesuk. A CRM system for
social media: challenges and experiences. In WWW, pages
49-58, 2013.

C. Aone and M. Ramos-Santacruz. Rees: A large-scale
relation and event extraction system. In ANLP, pages 76-83,
2000.

D. E. Appelt, J. R. Hobbs, J. Bear, D. J. Israel, and M. Tyson.
FASTUS: A finite-state processor for information extraction
from real-world text. In IJCAI, pages 1172-1178. Morgan
Kaufmann, 1993.

D. E. Appelt and B. Onyshkevych. The common pattern
specification language. In Proceedings of the TIPSTER Text
Program: Phase I1I, pages 23-30, Baltimore, Maryland,
USA, 1998.

M. Arenas, L. E. Bertossi, and J. Chomicki. Consistent query
answers in inconsistent databases. In PODS, pages 68-79,
1999.

E. Benson, A. Haghighi, and R. Barzilay. Event discovery in
social media feeds. In ACL, pages 389-398, 2011.

D. M. Bikel, S. Miller, R. M. Schwartz, and R. M.
Weischedel. Nymble: a high-performance learning
name-finder. In ANLP, pages 194-201, 1997.

V. R. Borkar, K. Deshmukh, and S. Sarawagi. Automatic
segmentation of text into structured records. In SIGMOD
Conference, pages 175-186. ACM, 2001.

M. Brocheler, L. Mihalkova, and L. Getoor. Probabilistic
similarity logic. In UAI, pages 73-82. AUAI Press, 2010.

R. C. Bunescu and R. J. Mooney. Subsequence kernels for
relation extraction. In NIPS, 2005.

M. E. Califf and R. J. Mooney. Relational learning of
pattern-match rules for information extraction. In AAAI/TAAI
pages 328-334. AAAI Press / The MIT Press, 1999.

F. Chen, X. Feng, C. Re, and M. Wang. Optimizing statistical
information extraction programs over evolving text. In
ICDE, pages 870-881. IEEE Computer Society, 2012.

L. Chiticariu, R. Krishnamurthy, Y. Li, S. Raghavan,

F. Reiss, and S. Vaithyanathan. SystemT: An algebraic
approach to declarative information extraction. In ACL,
pages 128-137, 2010.

L. Chiticariu, Y. Li, and F. R. Reiss. Rule-based information
extraction is dead! Long live rule-based information
extraction systems! In EMNLP, pages 827-832. ACL, 2013.
F. Ciravegna. Adaptive information extraction from text by
rule induction and generalisation. In IJCAI, pages
1251-1256. Morgan Kaufmann, 2001.

A. Coden, D. Gruhl, N. Lewis, M. A. Tanenblatt, and

J. Terdiman. Spot the drug! An unsupervised pattern
matching method to extract drug names from very large
clinical corpora. In HISB, pages 33-39. IEEE Computer
Society, 2012.

A. Culotta and J. S. Sorensen. Dependency tree kernels for
relation extraction. In ACL, pages 423-429. ACL, 2004.

H. Cunningham. GATE, a general architecture for text
engineering. Computers and the Humanities, 36(2):223-254,
2002.

162

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

[36]

(37]
(38]

[39]

[40]

N. N. Dalvi and D. Suciu. Efficient query evaluation on
probabilistic databases. In VLDB, pages 864-875. Morgan
Kaufmann, 2004.

M. Dylla, I. Miliaraki, and M. Theobald. A
temporal-probabilistic database model for information
extraction. PVLDB, 6(14):1810-1821, 2013.

R. Fagin, B. Kimelfeld, F. Reiss, and S. Vansummeren.
Spanners: a formal framework for information extraction. In
PODS, pages 37-48. ACM, 2013.

R. Fagin, B. Kimelfeld, F. Reiss, and S. Vansummeren.
Cleaning inconsistencies in information extraction via
prioritized repairs. In PODS. ACM, 2014.

D. Freitag. Toward general-purpose learning for information
extraction. In COLING-ACL, pages 404—408, 1998.

D. Freitag. Machine learning for information extraction in
informal domains. Machine Learning, 39(2/3):169-202,
2000.

Q. Fu, J.-G. Lou, Y. Wang, and J. Li. Execution anomaly
detection in distributed systems through unstructured log
analysis. In /ICDM, pages 149-158, 2009.

S. Ginsburg and X. S. Wang. Regular sequence operations
and their use in database queries. J. Comput. Syst. Sci.,
56(1):1-26, 1998.

V. Gogate, W. A. Webb, and P. Domingos. Learning efficient
Markov networks. In NIPS, pages 748-756. Curran
Associates, Inc., 2010.

R. Grishman and B. Sundheim. Message understanding
conference 6: A brief history. In COLING, pages 466-471,
1996.

R. Hoffmann. Interactive Learning of Relation Extractors
with Weak Supervision. PhD thesis, University of
Washington, 2012.

R. Hoffmann, C. Zhang, X. Ling, L. S. Zettlemoyer, and

D. S. Weld. Knowledge-based weak supervision for
information extraction of overlapping relations. In ACL,
pages 541-550. The Association for Computer Linguistics,
2011.

X. D. Huang, Y. Ariki, and M. A. Jack. Hidden Markov
models for speech recognition, volume 2004. Edinburgh
university press Edinburgh, 1990.

S. B. Huffman. Learning information extraction patterns
from examples. In S. Wermter, E. Riloff, and G. Scheler,
editors, Learning for Natural Language Processing, volume
1040 of Lecture Notes in Computer Science, pages 246—260.
Springer, 1995.

Institute of Electrical and Electronic Engineers and the Open
group. The open group base specifications issue 7, 2013.
IEEE Std 1003.1, 2013 Edition.

H. Isozaki and H. Kazawa. Efficient support vector classifiers
for named entity recognition. In COLING, 2002.

T. S. Jayram, R. Krishnamurthy, S. Raghavan,

S. Vaithyanathan, and H. Zhu. Avatar information extraction
system. [EEE Data Eng. Bull., 29(1):40-48, 2006.

A. K. Jha and D. Suciu. Probabilistic databases with
MarkoViews. PVLDB, 5(11):1160-1171, 2012.

B. Kimelfeld and C. Ré. Transducing Markov sequences. In
PODS, pages 15-26. ACM, 2010.

D. Klein and C. D. Manning. Conditional structure versus
conditional estimation in NLP models. In EMNLP, pages
9-16. Association for Computational Linguistics, 2002.

S. Kok and P. Domingos. Using structural motifs for learning
Markov logic networks. In Statistical Relational Artificial

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Intelligence, volume WS-10-06 of AAAI Workshops. AAALI,
2010.

J. D. Lafferty, A. McCallum, and F. C. N. Pereira.
Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. In ICML, pages
282-289, 2001.

T. R. Leek. Information extraction using hidden Markov
models. Master’s thesis, UC San Diego, 1997.

Y. Li, K. Bontcheva, and H. Cunningham. SVM based
learning system for information extraction. In Deterministic
and Statistical Methods in Machine Learning, volume 3635
of Lecture Notes in Computer Science, pages 319-339.
Springer, 2004.

X. Ling and D. S. Weld. Temporal information extraction. In
AAAI. AAAI Press, 2010.

B. Liu, L. Chiticariu, V. Chu, H. V. Jagadish, and F. Reiss.
Automatic rule refinement for information extraction.
PVLDB, 3(1):588-597, 2010.

A. McCallum, D. Freitag, and F. C. N. Pereira. Maximum
entropy Markov models for information extraction and
segmentation. In ICML, pages 591-598, 2000.

A. Nagesh, G. Ramakrishnan, L. Chiticariu,

R. Krishnamurthy, A. Dharkar, and P. Bhattacharyya.
Towards efficient named-entity rule induction for
customizability. In EMNLP-CoNLL, pages 128-138. ACL,
2012.

F. Niu, C. Ré, A. Doan, and J. W. Shavlik. Tuffy: Scaling up
statistical inference in Markov logic networks using an
RDBMS. PVLDB, 4(6):373-384, 2011.

R. Plamondon and S. N. Srihari. On-line and off-line
handwriting recognition: A comprehensive survey. IEEE
Trans. Pattern Anal. Mach. Intell., 22(1):63-84, 2000.

H. Poon and P. Domingos. Joint inference in information
extraction. In AAAI’07: Proceedings of the 22nd national
conference on Artificial intelligence, pages 913-918. AAAI
Press, 2007.

J. Pujara, H. Miao, L. Getoor, and W. Cohen. Knowledge
graph identification. In International Semantic Web
Conference (1), volume 8218 of Lecture Notes in Computer
Science, pages 542-557. Springer, 2013.

L. D. Raedt and K. Kersting. Statistical relational learning. In
C. Sammut and G. I. Webb, editors, Encyclopedia of
Machine Learning, pages 916-924. Springer, 2010.

K. Raghunathan, H. Lee, S. Rangarajan, N. Chambers,

M. Surdeanu, D. Jurafsky, and C. D. Manning. A multi-pass
sieve for coreference resolution. In EMNLP, pages 492-501.
ACL, 2010.

F. Reiss, S. Raghavan, R. Krishnamurthy, H. Zhu, and

S. Vaithyanathan. An algebraic approach to rule-based
information extraction. In /ICDE, pages 933-942, 2008.

163

[55]

[56]

[57]

(58]

(591

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

M. Richardson and P. Domingos. Markov logic networks.
Machine Learning, 62(1-2):107-136, 2006.

E. Riloff and R. Jones. Learning dictionaries for information
extraction by multi-level bootstrapping. In AAAI/IAAI, pages
474-479. AAAI Press / The MIT Press, 1999.

S. Sarawagi. Information extraction. Foundations and Trends
in Databases, 1(3):261-377, 2008.

S. Satpal, S. Bhadra, S. Sellamanickam, R. Rastogi, and

P. Sen. Web information extraction using Markov logic
networks. In KDD, pages 1406-1414. ACM, 2011.

W. Shen, A. Doan, J. F. Naughton, and R. Ramakrishnan.
Declarative information extraction using datalog with
embedded extraction predicates. In VLDB, pages 1033-1044,
2007.

S. Soderland. Learning information extraction rules for
semi-structured and free text. Machine Learning,
34(1-3):233-272, 1999.

S. Staworko, J. Chomicki, and J. Marcinkowski. Prioritized
repairing and consistent query answering in relational
databases. Ann. Math. Artif. Intell., 64(2-3):209-246, 2012.
F. M. Suchanek, G. Ifrim, and G. Weikum. Combining
linguistic and statistical analysis to extract relations from
web documents. In KDD, pages 712-717. ACM, 2006.

F. M. Suchanek, M. Sozio, and G. Weikum. SOFIE: a
self-organizing framework for information extraction. In
WWW, pages 631-640. ACM, 2009.

D. Z. Wang, M. J. Franklin, M. N. Garofalakis, J. M.
Hellerstein, and M. L. Wick. Hybrid in-database inference
for declarative information extraction. In SIGMOD
Conference, pages 517-528. ACM, 2011.

R. Wisnesky, M. A. Herndndez, and L. Popa. Mapping
polymorphism. In /CDT, ACM International Conference
Proceeding Series, pages 196-208. ACM, 2010.

H. Xu, S. P. Stenner, S. Doan, K. B. Johnson, L. R. Waitman,
and J. C. Denny. Application of information technology:
Medex: a medication information extraction system for
clinical narratives. JAMIA, 17(1):19-24, 2010.

D. Zelenko, C. Aone, and A. Richardella. Kernel methods
for relation extraction. Journal of Machine Learning
Research, 3:1083-1106, 2003.

C. Zhang, T. Baldwin, H. Ho, B. Kimelfeld, and Y. Li.
Adaptive parser-centric text normalization. In ACL (1), pages
1159-1168. The Association for Computer Linguistics,
2013.

H. Zhu, S. Raghavan, S. Vaithyanathan, and A. Loser.
Navigating the intranet with high precision. In WWW, pages
491-500, 2007.

